Adjoint matrix: The adjoint of a matrix A is the transpose of the cofactor matrix of A. It is denoted by adj A. An adjoint matrix is also called an adjugate matrix.

Example: Find the cofactor matrix of **A** given that
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 1 & 0 & 6 \end{bmatrix}$$
.

Solution: First find the cofactor of each element.

$$A_{11} = \begin{vmatrix} 4 & 5 \\ 0 & 6 \end{vmatrix} = 24 \qquad A_{12} = -\begin{vmatrix} 0 & 5 \\ 1 & 6 \end{vmatrix} = 5 \qquad A_{13} = \begin{vmatrix} 0 & 4 \\ 1 & 0 \end{vmatrix} = -4$$
$$A_{21} = -\begin{vmatrix} 2 & 3 \\ 0 & 6 \end{vmatrix} = -12 \qquad A_{22} = \begin{vmatrix} 1 & 3 \\ 1 & 6 \end{vmatrix} = 3 \qquad A_{23} = -\begin{vmatrix} 1 & 2 \\ 1 & 0 \end{vmatrix} = 2$$
$$A_{31} = \begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = -2 \qquad A_{32} = -\begin{vmatrix} 1 & 3 \\ 0 & 5 \end{vmatrix} = -5 \qquad A_{33} = \begin{vmatrix} 1 & 2 \\ 0 & 4 \end{vmatrix} = 4$$
The cofactor matrix is thus
$$\begin{vmatrix} 24 & 5 & -4 \\ -12 & 3 & 2 \\ -2 & -5 & 4 \end{vmatrix}.$$

Now

Adj A = transpose of cofactor matrix of A

	[24	5	-4]]	24	-12	
\Rightarrow Adj A = transpose of	-12	3	2	\Rightarrow Adj A =	5	3	-5
	-2	-5	4		4	2	4

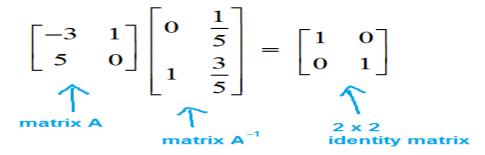
What is an inverse matrix?

When working with numbers such as 3 or -5, there is a number called the multiplicative inverse that you can multiply each of these by to get the identity 1.

In the case of 3, that inverse is 1/3, and in the case of -5, it is -1/5.

The inverse of a matrix A is a matrix that, when multiplied by A results in the identity. The notation for this inverse matrix is A^{-1} .

The product of A and its inverse is the identity:



Does every matrix have an inverse?

Thinking about the number 0, there is no number you can multiply it by to get 1. So, the number 0 has no multiplicative inverse. Similarly, not every matrix has an inverse.

(i) A is square matrix (ii) A is non -singular matrix Show that $\begin{bmatrix} 8 & 2 \\ 4 & 3 \end{bmatrix}$ is non – singular. 3 8 1] For instance, the matrix $A = \begin{bmatrix} -4 & 1 & 1 \end{bmatrix}$ is a singular matrix, since Solution -4 1 1 Let $A = \begin{bmatrix} 8 & 2 \\ 4 & 3 \end{bmatrix}$ |A| = 3(1-1) - 8(-4+4) + 1(-4+4) = 0. $|A| = \begin{vmatrix} 8 & 2 \\ 4 & 3 \end{vmatrix}$ If $B = \begin{bmatrix} 2 & 6 & 1 \\ -3 & 0 & 5 \end{bmatrix}$ then $|B| = 2(0 - 20) - (-3)(-42 - 4) + 5(30 - 0) = -28 \neq 0$. = 24 - 8 = 16**≠** 0 5 4 -7 ... A is a non-singular matrix So it has no inverse. So it has an inverse matrix.

A matrix 'A' has an inverse if

Methods for finding inverse matrix:

- (i) Adjoint matrix method
- *(ii)* Row elementary operation method

Adjoint matrix method: $A^{-1} = \frac{Adj \text{ of } A}{Deteminant \text{ of } A} = \frac{Adj \text{ of } A}{|A|}$

$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \end{bmatrix} \text{cofactor matrix} = \begin{bmatrix} 24 & 5 & -4 \\ -12 & 3 & 2 \end{bmatrix}$	Method 1: The Adjoint Method			
$A_{11} = \begin{vmatrix} 4 & 5 \\ 0 & 6 \end{vmatrix} = 24 A_{12} = -\begin{vmatrix} 0 & 5 \\ 1 & 6 \end{vmatrix} = 5 A_{13} = \begin{vmatrix} 0 & 4 \\ 1 & 0 \end{vmatrix} = -4$	$\mathbf{A} = \begin{bmatrix} 0 & 4 & 5 \\ 1 & 0 & 6 \end{bmatrix} \qquad \text{Adjoint} = \begin{bmatrix} 5 & 3 & -5 \\ -4 & 2 & 4 \end{bmatrix}, \ \mathbf{A} = 22$			
$A_{31} = \begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = -2 A_{32} = -\begin{vmatrix} 1 & 3 \\ 0 & 5 \end{vmatrix} = -5 A_{33} = \begin{vmatrix} 1 & 2 \\ 0 & 4 \end{vmatrix} = 4$	$A^{-1} = \frac{\begin{bmatrix} 24 & -12 & -2\\ 5 & 3 & -5\\ -4 & 2 & 4 \end{bmatrix}}{22} = \begin{bmatrix} 1.09 &5454 &0909\\ .2273 & .1363 &2273\\1818 & .0909 & .1818 \end{bmatrix}$			

(a)
$$A^{-1} = \frac{adj(A)}{|A|} = \frac{1}{|A|} \cdot adj(A)$$

 $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}; |A| = 0 - 1(1 - 9) + 2(1 - 6) = 8 - 10$
 $|A| = -2 \neq 0$
 $Adj = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}$
 $A_{11} = (-1)^{1+1}[(2)(1) - (3)(1)] = -1$
 $A_{12} = 8, A_{13} = -5, A_{21} = 1, A_{22} = -6$
 $A_{23} = 3, A_{31} = -1, A_{32} = 2, A_{33} = -1$
 $\therefore A^{-1} = \frac{1}{-2} \begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{bmatrix} = \begin{bmatrix} 1/2 & -1/2 & 1/2 \\ -4 & 3 & -1 \\ 5/2 & -3/2 & 1/2 \end{bmatrix}.$

Problem: Find the inverse of the matrix $A = \begin{bmatrix} 6 & 5 \\ 5 & 4 \end{bmatrix}$ by Adjoint matrix method ans: $A^{-1} = \begin{bmatrix} -4 & 5 \\ 5 & -6 \end{bmatrix}$ **Problem:** Find the inverse of the matrix $A = \begin{bmatrix} 7 & 1 \\ -3 & 2 \end{bmatrix}$ by Adjoint matrix method ans: $A^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Problem: Find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & -1 \\ -5 & 1 & 1 \end{bmatrix}$ by Adjoint matrix method